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ABSTRACT. In this paper we present a scheme based on semi-Lagrangian in-
tegration (SLI) for approximating the solution of the Navier-Stokes equations.
Exact solutions of these equations are generally difficult to find particularly
when strict physical conditions are required to hold. However, in this paper
we focus on the stability of an approximate solution. The solution presented
is unconditionally stable and therefore allows for arbitrary time steps. It can
be used for a stable and an efficient real-time simulation of fluid flow. Appli-
cations are found in computer graphics, weather forecasting and other areas
that require real-time simulation of fluid flow.

1. INTRODUCTION

The Navier-Stokes equations for incompressible flow model the dynamics of fluid
flow in space x = (x,y,z) and time ¢. The fluid is represented by its velocity
u(x,t) and pressure p(x,t) fields. The non-dimensional form of the Navier-Stokes
equations is given by:

(1.1) V.ou=0

where u(x, t) is a vector velocity field, p(x, t) is a scalar pressure field, f is a constant
external force acting on the fluid element, and p is the coefficient of viscosity of the
medium.

The basic assumption that governs the Navier-Stokes equations is that the fluid
is a continuum; that is, it is not composed of discrete particles. Also, it is assumed
that all the fields of interest such as pressure, velocity, density, temperature, etc,
are differentiable.

Note that incompressible flow (isochoric flow) refers to a flow in which the mate-
rial density is constant within an infinitesimal volume that moves with the velocity
of the fluid. Put differently a flow is incompressible if the divergence of the fluid
velocity is zero. Therefore incompressible flow does not imply that the fluid itself
is incompressible.

{ Qu— _(u-Viu-Vp+puViu+f

2. SEMI-LAGRANGIAN INTEGRATION METHODS

2.1. Background. In general, there are two major approaches to the mathematical

description of fluid flows namely, Eulerian and Lagrangian approaches. In Eulerian

approach, there is a single fixed reference frame from which the flow is observed.

This may be likened to an observer standing on a river bank watching the flow

evolve. On the other hand, in the Lagrangian viewpoint, the reference frame is
1
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not fixed but moves with the flow. Thus, the reference frame in the Lagrangian
viewpoint is dependent on both space and time. These two approaches give rise to
two distinct numerical models.

It is the Lagrangian approach that we use in this paper in determining an un-
conditionally stable solution to the Navier-Stokes equations.

2.2. Mathematical Foundation of Semi-Lagrangian Methods. Consider the
convection equation
9¢

(2.1) 5 T V(@.1).V6=0

where ¢ is a scalar field and V(z,t) is a velocity function. Clearly (2.1) advects ¢
through the velocity field V. Semi-Lagrangian methods arise from the observation
that (2.1) propagates ¢ along characteristic curves x = x(t) defined by the equation

(2.2) X(t) = V(x(®),1), x(0)= 0.
Therefore we can find values of ¢ at any time ¢t simply by finding the characteristic
curve that passes through (z, t) following it backward to some previous point (zg, tg)
where the value of ¢ is known, and then setting ¢(x,t) = ¢(xo, to).

Thus, (2.1) is decoupled into a system of ordinary differential equations as fol-
lows:

(2.3) adt

dat —

{ S =Vt

In the following sections, we shall take a closer look of advection using semi-
Langragian methods. This, we hope, will give us a firmer understanding of the
underpinnings of the Lagrangian methods.

2.3. Linear Advection. The general advection problem is in the form
Ou ou _
(24) ot +a’($7t7u)ax g(x,t,u)
u(z,0,u) = uo(x,u).
We shall develop a semi-Lagrangian integration scheme for (2.4). The construction
of the scheme is in three steps, namely:

1. Trajectory (characteristic) tracing
2. Interpolation
3. Time discretization.

These steps constitute the three components of semi-Lagrangian scheme for advec-
tion.

2.3.1. Homogeneous Constant Velocity Advection. Suppose in this case that the
source term g(x,t,u) = 0 and a(z,t,u) = constant. Thus (2.4) reduces to the form

Ou ou
9. 2.
(2.5) N + am 0
Using the method of characteristics, (2.5) is rewritten as
dx
2.6 = =
(2.6) o a
du
2.7 — = 0.
(2.7) 7
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Equations (2.6) and (2.7) are to be solved for the functions x(t) and u(x(t),t),
respectively. Indeed, (2.6) describes the trajectory of an object moving at the
advecting velocity a. Given the initial condition z = z¢ at ¢ = 0, we have

(2.8) z(t) =at+x9, t>0.
The solution of (2.7) is
(2.9) u(z,t) = constant.

This means that u(z,t) is constant along a characteristic curve. Combining (2.8)
and (2.9) we obtain

(2.10) u(zo + at,t) = u(zo,t), t>0.
Therefore, the solution of (2.5) is
(2.11) u(z,t) = up(z — at).

Using the above description to obtain a numerical scheme for solving (2.5) results
in a semi-Lagrangian method for solving the advection problem (2.5).

Characteristic Tracing and Interpolation

Implementation of semi-Lagrangian integration scheme for the advection prob-
lem involves using a finite difference representation of the solution of (2.5). Suppose
that the grid has space and time mesh Az and At, respectively. Then uj denotes
the approximation of the solution w(zx;,t,), where 2; = jAz and t, = nAt.

tn-‘rl /

2 V4

LTild Ti4+1 Z

FiGure 1. Computational Grid

A key assumption in constructing the semi-Lagrangian scheme is that the solu-
tion is known at time t = ¢,,. Thus the method of characteristics is used to advance
the solution by one time step. In other words, given u(x;,t,), we desire to find the
finite difference solution ué”“ at time t = t, 41 for each j. In Figure 1, we show
the characteristic which passes through the node x = z; at time ¢ = ¢, ;. This
characteristic is a straight line with slope 1/a. Tracing back in time, it is seen that

it passes through the point x = x4 at time ¢t = t,,. Specifically, x4 is the departure
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point of the characteirstic at time ¢ = ¢,, which arrives at * = z; in time ¢t = ¢,,11.

Next, in the general advection case, time discretization of the solution is performed
at this stage of the scheme. Here, we consider the solution u which has been shown
to be constant along any characteristic. Therefore, we have

(2.12) uptt = uf,

where u); denotes the value of u at the departure point.

Here a problem involving x4 arises. The problem is that, in general, x4 is not
a grid point. For if it happens to be a grid point, 24 = x;, for example, then (2.12)
would give

(2.13) "t =l

] K3
Otherwise, one would have to interpolate to obtain an approximation for u;”l. A
variety of interpolation schemes may be considered for use. Suppose that z4 lies
between the nodes x; and x;11, then a linear interpolation yields

Tg — X4 —Tq+ Tit1 U

Ti+1 — T4 Ti+1 — T4

It then follows that w/} is an approximation of w(xq,ty).

Equation(2.12) provides a finite difference approximation at time ¢,4; from the
information provided at ¢,,. Clearly, this scheme has only first order accuracy. One
can easily derive a higher order scheme by using an interpolation scheme of higher
order.

It is worth mentioning that the accuracy of the charateristic tracing determines
the efficiency of the semi-Lagrangian integration method.

2.3.2. Variable Velocity Advection. In this section, we consider (2.4) again but now
with a variable velocity field a(x,t,u) while g(z,t, u) remains zero. In this case, a
numerical scheme is required to determine the departure point x4.

We want to solve

dx

(2.15) prl a(x,t,u)
du
2.16 — = 0.
(2.16) 7
First, we solve
dr (2,4, 0)
o =a(z,t,u

for x(t,) subject to the condition x(t,+1) = ;. The point x(t,) is in this case the
departure point for ;. To numerically solve the characteristic equation we discretize
the equation. The midpoint rule gives reasonably accurate results for solving this
problem. Thus,

(2.17) % = (T, tn + AL/2)

where ,,, = £ (; + x4). Clearly, (2.17) is an implicit equation and can be solved
by fixed point iteration.
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Setting
c=x; — x4,
then (2.17) may be expressed as
(2.18) ¢ = Ata(z; — ¢/2,t, + At/2).

Consequently, the iteration

1 1
(2.19) D = Ata(z; — §c(k),tn +5A)
gives a numerical solution of (2.17) and we obtain
(2.20) Tq=xj — C.

Observe that t = 0,1, 2, ..., tn. Therefore, to obtain a value at ¢, 1/ = t,, + %At,
some extrapolation is required.

Taylor series expansion can be used to obtain extrapolation formulas that are
reasonably good. For example, a second order extrapolation formula is

a'tr = %(3@" —a" ) +0(A?).

2.3.3. Nonzero Source Term. Now we consider the case where the source term is
nonzero, that is, g(x,t,u) # 0 in (2.4). The system reduces to the form

(2.21) (cll_>t< = a(z,t,u)
du
(2.22) - = g(x,t,u).

This leads us to the final step of the SLI scheme. This involves time discretiza-
tion of (2.22).

Time Discretization
We have

u Tt —

J
(2.23) N

where v}y ~ u(xq,t,) and ¢} =~ g(xaq,tn). The parameter « is an implicitness pa-
rameter. The procedure is fully implicit if « = 1 and explicit if a« = 0. Otherwise,
the procedure is considered semi-implicit.

=(1-a)gj +ag;™!

3. SOLUTION OF THE NAVIER-STOKES

Having established the fundamental concepts of semi-Lagrangian integration, we
can now apply the scheme to the Navier-Stokes equation (1.1):

(3.1) { %:—(u~V)u—Vp+,uV2u+f
' V-u=0
By doing so, we obtain

dX — u(x(t),t)
2 dt ?
(3.2) { @ =-Vp+pVia+f

where J 5
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We discretize using a backward differentiation formula to obtain the semi-Lagrangian
scheme:

At \2 2 ¢
Equation (3.3) is solved using the Projection Method.

1 1
(3.3) <3u"Jrl —2uj + —u”1> = —Vp" T 4 pAu"tt 4 £

3.1. The Projection Method. The projection method for solving the flow equa-
tion is based on the observation that in the equation

(3.4) w+ (wV)u+Vp = pViu,

(3.5) Va = 0,

u;+Vu is a Helmholtz-Hodge decomposition. Essentially, Helmholtz-Hodge decom-

position says that any vector function V(x) can be decomposed into a divergence-
free part u and the gradient of a scalar potential ¢, that is,

(3.6) V(z) =u(z) + Vo(x)

with V.u = 0, and < u, V¢ >= 0 for a suitably chosen inner product. This implies
that u and V¢ are orthogonal.
Therefore, the projection of V is

(3.7) u=P(V).

The procedure begins by approximating (3.4)

(3.8) u; + (u.V)u+ Vg = uViu*,
while the divergence-free velocity is computed using

(3.9) u(t) = P(u*(t))

where Vq(z,t) approximates the pressure gradient. Now
(3.10) u"=u+Vo

implies that

(3.11) Vau* =V.(u+ Vo) = %BW%
It then follows that

(3.12) Vip =V.u*

which is an elliptic constraint. The pressure can be recovered using
(3.13) Vp =V(q+ ¢¢) — uV>Va.

Substituting (3.10) into (3.8) yields
W+ Vo) + (uViu+Vg = pVi(u+ Vo)
W+ (Vo) + (wV)u+Vg = uVia+ pVive)
That is
(3.14) w + (WV)u+ {V(g+ ¢) — uV?Ve} = vV2u.

Comparing (3.4) and (3.14) we obtain (3.13).
Implementation of the projection method differs depending on how the advection
term and the quantity ¢ are approximated. We also have to consider whether (3.8)
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is advanced explicitly or implicitly and how the pressure gradient update formula
(3.13) is approximated.

We now summarize the projection method for implementation purposes. The
projection method is a three-step procedure.
Step 1: Here we split (3.3) by ignoring the pressure term. Thus, we have

1 /3 1

At 2
Thus, given the velocity field u™ at time ¢, we solve (3.15) for the u*.

Equation (3.15) may be rewritten as

3 1
(3.16) (51— AtuNV?)u* = 2u” — §u3_1 + AtfrHL
Partitioning the domain into an N x N grid, we have
3 At 1
(3.17) Sui - A—fo (whr = 2uf + i) = 2uf, — Suf "+ AL
where i = 1,2,..., N — 1. In matrix form, the linear system appears as follows
(3.18) Au* =c,
where
[3+2a —a 0 0 0 1 .
3 1
-« s+ 2a - 0 0 u’
0 —« % +2a —« 0 2
A= . . s u* = .
0 0 2420 —a Zgyfz
|0 0 —a 2+2q] B 1
aug + 2ug, — %ugl_l + Attt
2ug, — %UZ;l +Atfy Atp
c= : anda:(Ax)Q.

auy +2uy = %ug;il + Atf}\’,tll
We see that since o > 0, the coefficient matrix A is positive definite, symmetric,
strictly diagonally dominant and tridiagonal. Therefore the Crout Factorization
procedure or the Successive Over-relaxation (SOR) procedure can be used to solve
the system. Details of these procedures can be obtained from any standard text on
numerical analysis, for example [3],[1],[6].
Step 2: The solution, of course, must satisfy the incompressibility condition
V.u"*t! = 0. This condition is addressed in this step by introducing a potential
function ¢" ! where ¢ solves the Poisson equation:

1
3.19 A"t = — (V.u¥).
(3.19) o = 1 (V)
Step 3: Finally, we solve
3
(3.20) Vp'tt = EVqﬁ”“ — AtpV3nTh

for the pressure.
Steps two and three are not difficult to solve as there is a variety of approaches
for solving such linear systems.
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3.2. Conmsistency. A numerical discretization is said to be consistent if it tends
to the associated differential equation as Az — 0 and At — 0. Consistency is a
necessary condition for approximate solution.

Taylor’s series expansion of the terms of the numerical discretization can be
used to verify consistency. The Taylor’s expansions of the terms are substituted
into the discretized equation and the resulting equation is checked if it tends to the
differential equation as Az and At approach zero. To demonstrate, consider the
discretisation given in (3.3).

du\"" (A2 [ d2u\"
21 n_ gt A 22
(3:21) fem <dt)i " 2 (dt2)i i
du\ " (2A4)? [ d?u e
22 Pl =t oA [ — —
(3.22) Ul Ul (dt>i " 2 (dt2)i i

Substituting (3.21) and (3.22) in (3.3) we obtain

LByt ap (D), (AD? (dPu\"
(3.23) s <2ui 2(u; At g7 t I i—i—...)—i—

%

1, oh1 du\"" (2A1)? [ d2u "
(3.24) 2(ui 2At<dt>i + 5 i ) +...)
(325) _ —Vpn+1 4 Vv2u;(7.+1 - fin+1
Simplifying we obtain

du n+1
200 () +OMADR (A0 =~V E v g

Clearly the numerical discretization (3.3) is consistent since (3.26) tends to the
original differential equation as Ax — 0 and At — 0.

3.3. Stability. Stability is the tendency of any perturbtions of the discretized sys-
tem to decay. Therefore a system is unstable if an initial perturbation eventually
becomes unbounded.

The eigenvalues of the coefficient matrix A are

3 . mi \1? .
/\i—§+4a [s1n<ﬁ>} , fori=1,2,...,N — 1.

Since a = % > 0, it follows that A\; > %, forall=1,2,..., N — 1. Since none

of the eigenvalues of A are zero, it follows that A~! exists. Therefore an error

e in the initial data results in an error of (A~1)"e(®) at the nth step. Since

the eigenvalues of A~! are the reciprocals of the eigenvalues of A, it follows that

the spectral radius p(A~!) is bounded above by 1. This in turn implies that any

pertuArbations to the discretized system eventually decay regardless of the choice of
¢

a = K. This establishes that our scheme is unconditionally stable.

The preceding discussion is summarized in the following statement.

Theorem 3.1. Suppose the conditions of Equation (1.1) hold, then the semi-
Lagrangian Integration scheme (3.2), (3.3) is unconditionally stable.
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4. CONCLUSIONS

In this paper we have presented an unconditionally stable second-order scheme

for solving the incompressible Navier-Stokes equations. Semi-Lagrangian integra-
tion method is used to update the momentum equation and stiffly backward dif-
ference procedure is used to treat the diffusion term. The desired quantities are
sampled at the grid nodes of the domain. In theorem 3.1, we presented criteria for
unconditional stability of the scheme.

REFERENCES

Bradie, B., A Friendly Introduction to Numerical Analysis, Pearson, 2006.

Brown, D. L., Accuracy of the Projection Methods for the Incompressible Navier-Stokes Equa-
tions, Workshop on Numerical Solution of Incompressible Flows, Half Moon bay, California,
2001.

Burden, R. L. and Faires, J. D., Numerical Analysis, Thomson, 2005.

Stam, J., Stable Fluids SIGGRAPH 121-128, 1999.

Staniforth, A. and C6té, J., Semi-Lagrangian integration schemes for atmospheric models-A
review, Monthly Weather Review 119, 2206, (1991).

Watkins, D. S., Fundamentals of Matrix Computations, Wiley-Interscience, 2002.

Xiu, D., and Karniadakis, G. E., A Semi-Lagrangian High-Order Method for Navier-Stokes
Equations Journal of Computational Physics 172, 658-684, 2001.

DEPARTMENT OF MATHEMATICAL SCIENCES, NASARAWA STATE UNIVERSITY, KEFFI, NASARAWA

STATE, NIGERIA

Current address: Department of Mathematical Sciences, Nasarawa State University, Keffi,

Nasarawa State 920001, Nigeria

E-mail address: nnagwu@gmail.com

IUSER © 2015
http://www_ijser.org

2129





